Blood glucose

THE SECOND TEST to diagnose diabetes is the blood glucose test, which is also known as the
blood sugar or plasma glucose test. It is measured using either a fasting blood sugar test or an oral glucose tolerance test (OGT).

For the fasting blood glucose test, a patient is asked to have no caloric intake for at least eight hours. A blood sample is then taken and the amount of glucose in the blood is measured. A level above 7.0 mmol/L (or 126 mg/dL) is considered diabetic.

For the OGT, a patient is asked to ingest a standard test dose of 75 grams of glucose. A blood sample is taken two hours later and the amount of glucose in the blood is measured. A level above 11.1 mmol/L (or 200 mg/dL) is considered diabetic.

The A1C has largely replaced the fasting blood glucose test and the OGT for diagnosis because of its simplicity and convenience, but all of these tests are considered accurate and acceptable. Occasionally, diabetes is diagnosed using a random blood sugar test. A blood sample is taken at a random time and the level of glucose in the blood is measured. A level above 11.1 mmol/L (or 200 mg/dL) is considered diabetic if accompanied by other symptoms.

Fasting blood glucose > 7.0 mmol/L (126 mg/dL)
2 hour blood glucose > 11.1 mmol/L (200 mg/dL) during OGT
A1C > 6.5% (48 mmol/mol)
Symptoms of hyperglycemia and random blood glucose > 11.1 mmol/L (200
The total amount of glucose circulating in the blood at any time is surprisingly small— roughly a single teaspoonful. Glucose does not float freely around in the blood. Rather, most of the body’s glucose is contained within our cells.

Hormones tightly regulate our blood glucose to avoid excessively low or high levels.
Even when we eat large amounts of sugar, the blood glucose level still remains within a remarkably narrow, controlled range due to the coordinated actions of various hormones. As glucose is absorbed through the intestines into the blood, the islet cells within the pancreas secrete the hormone insulin. Insulin allows the glucose to enter the cells as fuel for energy. The body stores any excess glucose in the liver for future use, which keeps our blood glucose from rising out of its normal range.


TYPE 1 DIABETES has been previously called juvenile diabetes, since its onset commonly
occurs during childhood. However, although three-quarters of all cases are diagnosed in patients under eighteen, it may present at any age. The global incidence of type 1 diabetes has been rising in recent decades for unknown reasons and may be increasing by as much as 5.3 percent annually in the United States.

In Europe, at present rates, new cases of
type 1 diabetes will double between 2005 and 2030.
Type 1 diabetes is an autoimmune disease, meaning that the body’s own immune system damages the cells that secrete insulin. The patient’s blood contains antibodies to normal human islet cells, which provides evidence of an autoimmune attack. Over time, cumulative destruction of the insulin-producing cells causes type 1 diabetes to progress to severe insulin deficiency, whereupon symptoms typically occur.

There is a strong genetic predisposition to type 1 diabetes, but what eventually triggers the autoimmune destruction is uncertain. Seasonal variation in diagnosis may point to an infectious trigger, but which specific one is unclear. Other environmental agents that may play a role include sensitivity to cow’s milk, wheat protein, and low vitamin D. Type 1 diabetes often occurs together with other autoimmune diseases, such as Graves’ disease
(which affects the thyroid) or vitiligo (which affects the skin).

Type 1 diabetics suffer from a severe lack of insulin. Therefore the cornerstone of successful treatment is adequate replacement of the missing hormone insulin. The discovery of insulin injections dramatically improved the prognosis, leading to a widespread feeling that diabetes had been cured. However, the story did not end happily ever after.

Over the long term, type 1 diabetics are at much higher risk of complications, which affect almost all organs of the body, than nondiabetics. Type 1 diabetes reduces life expectancy by five to eight years and carries more than ten times the risk of heart disease compared with healthy patients
Blood glucose Blood glucose Reviewed by Leembo on March 02, 2019 Rating: 5

No comments

{ "gcm_sender_id": "376695005133" }